Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009920

RESUMO

Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.

2.
Mol Ecol ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37795678

RESUMO

Geographic isolation and chromosome evolution are two of the major drivers of diversification in eukaryotes in general, and specifically, in plants. On one hand, range shifts induced by Pleistocene glacial oscillations deeply shaped the evolutionary trajectories of species in the Northern Hemisphere. On the other hand, karyotype variability within species or species complexes may have adaptive potential as different karyotypes may represent different recombination rates and linkage groups that may be associated with locally adapted genes or supergenes. Organisms with holocentric chromosomes are ideal to study the link between local adaptation and chromosome evolution, due to their high cytogenetic variability, especially when it seems to be related to environmental variation. Here, we integrate the study of the phylogeography, chromosomal evolution and ecological requirements of a plant species complex distributed in the Western Euro-Mediterranean region (Carex gr. laevigata, Cyperaceae). We aim to clarify the relative influence of these factors on population differentiation and ultimately on speciation. We obtained a well-resolved RADseq phylogeny that sheds light on the phylogeographic patterns of molecular and chromosome number variation, which are compatible with south-to-north postglacial migration. In addition, landscape genomics analyses identified candidate loci for local adaptation, and also strong significant associations between the karyotype and the environment. We conclude that karyotype distribution in C. gr. laevigata has been constrained by both range shift dynamics and local adaptation. Our study demonstrates that chromosome evolution may be responsible, at least partially, for microevolutionary patterns of population differentiation and adaptation in Carex.

3.
Methods Mol Biol ; 2672: 529-547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335498

RESUMO

The ChromEvol software was the first to implement a likelihood-based approach, using probabilistic models that depict the pattern of chromosome number change along a specified phylogeny. The initial models have been completed and expanded during the last years. New parameters that model polyploid chromosome evolution have been implemented in ChromEvol v.2. In recent years, new and more complex models have been developed. The BiChrom model is able to implement two distinct chromosome models for the two possible trait states of a binary character of interest. ChromoSSE jointly implements chromosome evolution, speciation, and extinction. In the near future, we will be able to study chromosome evolution with increasingly complex models.


Assuntos
Cromossomos , Evolução Molecular , Humanos , Funções Verossimilhança , Cromossomos/genética , Filogenia , Poliploidia
4.
Ann Bot ; 130(7): 999-1014, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36342743

RESUMO

BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Filogenia , Cromossomos de Plantas/genética , Tamanho do Genoma , Genoma de Planta/genética
5.
PeerJ ; 9: e11336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046256

RESUMO

Carex section Schoenoxiphium (Cariceae, Cyperaceae) is endemic to the Afrotropical biogeographic region and is mainly distributed in southern and eastern Africa, with its center of diversity in eastern South Africa. The taxon was formerly recognized as a distinct genus and has a long history of taxonomic controversy. It has also an important morphological and molecular background in particular dealing with the complexity of its inflorescence and the phylogenetic relationships of its species. We here present a fully updated and integrative monograph of Carex section Schoenoxiphium based on morphological, molecular and cytogenetic data. A total of 1,017 herbarium specimens were examined and the majority of the species were studied in the field. Previous molecular phylogenies based on Sanger-sequencing of four nuclear and plastid DNA regions and RAD-seq were expanded. For the first time, chromosome numbers were obtained, with cytogenetic counts on 44 populations from 15 species and one hybrid. Our taxonomic treatment recognizes 21 species, one of them herein newly described (C. gordon-grayae). Our results agree with previous molecular works that have found five main lineages in Schoenoxiphium. We provide detailed morphological descriptions, distribution maps and analytical drawings of all accepted species in section Schoenoxiphium, an identification key, and a thorough nomenclatural survey including 19 new typifications and one nomen novum.

6.
Mol Phylogenet Evol ; 135: 203-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30880144

RESUMO

Large-scale changes in chromosome number have been associated with diversification rate shifts in many lineages of plants. For instance, several ancient rounds of polyploidization events have been inferred to promote genomic differentiation and/or isolation and, consequently, angiosperm diversification. Dysploidy, although less studied, has been suggested to also play an important role in angiosperm diversification. In this article, we aim to elucidate the role of chromosomal rearrangements on lineage diversification by analyzing a new comprehensive sedge (Cyperaceae) phylogenetic tree. Our null hypothesis is that the mode and tempo of chromosome evolution are to be homogeneous across the complete phylogeny. In order to discern patterns of diversification shifts and chromosome number changes within the family tree, we tested clade-specific chromosome evolution models for several subtrees according to previously reported increments of diversification rates. Results show that a complex, heterogeneous model composed of different clade-specific chromosome evolution transitions are significantly supported against the null hypothesis of a model with no chromosome number model transition events along the phylogeny. This could suggest a link between diversification and changes in chromosome number evolution although other possibilities are not discarded. Our methodological approach may allow identifying different patterns of chromosome evolution, as found for Cyperaceae, for other lineages at different evolutionary levels.


Assuntos
Cromossomos de Plantas/genética , Cyperaceae/genética , Evolução Molecular , Modelos Biológicos , Filogenia
7.
Chromosome Res ; 26(3): 139-152, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29043597

RESUMO

Despite most of the cytogenetic research is focused on monocentric chromosomes, chromosomes with kinetochoric activity localized in a single centromere, several studies have been centered on holocentric chromosomes which have diffuse kinetochoric activity along the chromosomes. The eukaryotic organisms that present this type of chromosomes have been relatively understudied despite they constitute rather diversified species lineages. On the one hand, holocentric chromosomes may present intrinsic benefits (chromosome mutations such as fissions and fusions are potentially neutral in holocentrics). On the other hand, they present restrictions to the spatial separation of the functions of recombination and segregation during meiotic divisions (functions that may interfere), separation that is found in monocentric chromosomes. In this study, we compare the diversification rates of all known holocentric lineages in animals and plants with their most related monocentric lineages in order to elucidate whether holocentric chromosomes constitute an evolutionary advantage in terms of diversification and species richness. The results showed that null hypothesis of equal mean diversification rates cannot be rejected, leading us to surmise that shifts in diversification rates between holocentric and monocentric lineages might be due to other factors, such as the idiosyncrasy of each lineage or the interplay of evolutionary selections with the benefits of having either monocentric or holocentric chromosomes.


Assuntos
Artrópodes/genética , Cromossomos de Insetos/genética , Cromossomos de Plantas/genética , Evolução Molecular , Magnoliopsida/genética , Nematoides/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...